
  ISSN: 2277-9655 

[IDSTM-18]  Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [978] 

 

IJESRT 
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH 

TECHNOLOGY 

FIREFLY OPTIMIZATION VARIANTS 
Sombir

1
,Sukhbir Singh

2
, sonu Manderna

3 

1
Assistant Professor, Department of Electrical Engineering, Ganga Technical Campus, Soldha, 

Bahadurgarh. 
2
Assistant Professor, Department of Electrical Engineering, Ganga Technical Campus, Soldha, 

Bahadurgarh. 
3
Assistant Professor, Department of Electrical Engineering, LIET, Alwar 

 

 

ABSTRACT 
Now a day’s every complex non linear mathematical problems is solved by bio inspired optimization 

algorithms, whether that problem is related to complex robotics system or to any electrical system to match 

reference value or to any filter to suppress ripples etc. In this paper the latest firefly optimization is discussed 

and variants of firefly with various random function for different non linear mathematical objective function is 

discussed. The point is proved in this paper is that the random distributed function affects the optimization. 
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I. INTRODUCTION 
Automatic problem solving with a digital computer has been the eternal quest ofresearchers in mathematics, 

computer science and engineering. The majority ofcomplex problems (also NP-hard problems [1]) cannot be 

solved using exact methodsby enumerating all the possible solutions and searching for the best 

solution(minimum or maximum value of objective function). Therefore, several algorithmshave been emerged 

that solve problems in some smarter (also heuristic) ways. Nowadays,designers of the more successful 

algorithms draw their inspirations fromNature. For instance, the collective behaviour of social insects like ants, 

termites,bees and wasps, or some animal societies like flocks of bird or schools of fish haveinspired computer 

scientists to design intelligent multi-agent systems [2]. Firefly algorithm is the latest optimization amongst 

these. This is based on the behavior of fireflies which beautify the sky at night with their light.  
 

Firefly Optimization has unique randomness factor. It searches for optimal solution by considering the 

randomness in a constructive way. So randomness plays a very important role in exploitation and exploration in 

search process. The exploitation moves the fireflies in the vicinity of the promising searching space while 

exploration looks for new searching space. In line with this, several random distributions can be helpful. For 

example, uniform distribution generates each point of the search space using the same probability. On the other 

hand, Gaussian distribution is biased towards the observed solution, that isthe smaller modifications occur more 

often than larger ones  [1]. In this paper different noisy non linear mathematical functions are considered with 

different randomness function like uniform distribution and normalize Gaussian distribution random function. 

The paper is categorized into four main sections. First section provides introduction of the topic, second put 

light on the background of firefly algorithm and various random distribution function. Third one is the chapter 

that inherits the results for different random function for different non linear mathematical function. Although 
there are various random functions available for use but we have shown results for only uniform and normalize 

distribution random functions. Fourth chapter concludes the paper. 

 

II. FIREFLY ALGORITHM 
Firefly Algorithm (FA) was first developed by Xin-She Yang in late 2007 and 2008 at Cambridge University, 

which was based on their light flashing and behavior of fireflies. Firefly optimization have three considerations:  

 Fireflies are unisex so each firefly will be attracted to other fireflies regardless of their gender. 
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  The attractiveness decreases with the distance as both are directly propostional to each other. Because 

of this each firefly will get attracted towards brighter firefly and if if there is no brighter firefly 

amongst two then each will move in random direction.  

  The brightness of a firefly is determined by the objective function depending upon the application. 

 

As a firefly’s attractiveness is proportional to the light intensity seen by adjacent fireflies, so attractiveness β  

can be related with distance r as  

𝛽 = 𝛽𝑜𝑒
−𝛾𝑟2

 
where𝛽𝑜 is the attractiveness at r = 0. 

When a firefly ‘i’ is attracted towards another firefly ‘j’ then that movement can be represented by the formula 

given below 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛽𝑜𝑒
−𝛾𝑟𝑖𝑗

2
 𝑥𝑗

𝑡 − 𝑥𝑖
𝑡 + 𝛼𝑡 ∈𝑖

𝑡  

 

In this second term represents the attractiveness. 𝛼𝑡 is the randomization parameter, and ∈𝑖
𝑡   is a vector of 

random numbers drawn from a Gaussian distribution or uniform distribution at time t and 𝛾 is an absorption 

coefficient. If 𝛽𝑜  = 0, that means there is no attractiveness between any firefly and firefly will move randomly. 

On the other hand, if  𝛾 = 0, it reduces to a variant of particle swarm optimization. Furthermore, the 

randomization  ∈𝑖
𝑡can easily be extended to other distributions.  

 

2.1 Parameter Settings 

𝛼𝑡 is randomness parameter and firefly’s movement is very sensitive to it and it can be tuned during iterations 

with iteration counter t. 

So a 𝛼𝑡  dependent upon the iteration counter t can be expressed as 

𝛼𝑡 =  𝛼𝑜𝛿
𝑡  

where𝛼𝑜  is the initial randomness scaling factor, and 𝛿 is a cooling factor. For most applications, we can use 𝛿 = 

0.95 to 0.97. 

 

The initial scaling of firefly optimization parameters is very important as performance depends upon it. The 

randomness scaling parameter is initially set to 0.01 which is required for steps to reach the target without 

covering large distance at once since small step size will yield good results. The parameter β controls the 

attractiveness, and parametric studies suggest that 𝛽𝑜  = 1 can be used for most,applications. However, should be 

also related to the scaling L. In general, we can set 𝛾 = 1/√L. For most applications, the population size n = 15 to 
100, though the best range is n = 25 to 40. In our work it is set to 6 so that less computation time it takes. 

 

2.2 Random Distribution Function 

2.2.1 Uniform Distribution Function[2] 

Uniform continuous distribution has the density function, as follows: 

𝑝 𝑥 =   
1

𝑏 − 𝑎
 𝑎 ≤ 𝑥 ≤ 𝑏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

Note that each possible value of the uniform distributed random variable is withinoptional interval [a, b], on 

which the probability of each sub-interval is proportionalto its length. If a ≤u < v ≤b then the following relation 

holds: 

𝑃 𝑢 < 𝑥 < 𝑣 =
𝑣 − 𝑢

𝑏 − 𝑎
 

 

Normally, the uniform distribution is obtained by a call to the random numbergenerator. Note that the discrete 

variate functions always return a value oftype unsigned which on most platforms means a random value from 

the interval[0, 232 −1]. In order to obtain the random generated value within the interval [0, 1],the following 

mapping is used: 

𝑟 = (
 𝑑𝑜𝑢𝑏𝑙𝑒 𝑟𝑎𝑛𝑑  

 𝑑𝑜𝑢𝑏𝑙𝑒  𝑅𝐴𝑁𝐷𝑀𝐴𝑋  +  𝑑𝑜𝑢𝑏𝑙𝑒  1 
) 
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2.2.2 Normal/Gaussian Distribution Function[2] 

Normal or Gaussian distribution is defined with the following density function: 

𝑝 𝑥 =  
1

𝜎 2𝜋
𝑒−

1

2
(
𝑥−𝑎

𝜎

2
)
 

 

The distribution depends on parameters a ∈Randσ>0. This distribution is denotedas N(a, σ). The standardized 

normal distribution is obtained, when the distributionhas an average value of zero with standard deviation of 

one, i.e., N(0, 1). In this case,the density function is simply defined as: 

𝑝 𝑥 =  
1

𝜎 2𝜋
𝑒−

1

2
(𝑥2)

 

 

The Gaussian distribution has the property that approximately 2/3 of the samplesdrawn lie within one standard 

deviation. That is, the most of the modificationsmade on the virtual particle will be small, whilst there is a non-

zero probability ofgenerating very large modifications, because the tail of distribution never reacheszero. 

 

III. RESULTS 
The four peak function for uniform distribution random function was implemented. The four peak function’s 

mathematical equation is given as 

𝑓 𝑥, 𝑦 =  𝑒−(𝑥−4)2−(𝑦−4)2
+ 𝑒−(𝑥−4)2−(𝑦−4)2

+ 2[𝑒− 𝑥 2− 𝑦 2
+ 𝑒− 𝑥 2− 𝑦+4 2

] 
 

The MATLAB plot for four peak function is shown in figure 3.1. 

 
Figure 3.1: MATLAB plot of four peak non linear mathematical function 

 

 The randomness factor alpha is considered 0.1, gamma =1 and delta is 0.97 for our results. The randomness 

factor can be in between [0, 1] only. If uniform distribution function is considered then the figure 3.2(a) shows 

the initial positionsassigned to each firefly and 3.2(b) shows final position settled. In figure 3.2(a) every firefly 

is settled at that position where it will get attracted maximum or light intensity of other firefly is maximum. 

That’s why figure shows all fireflies collected at one place. The plot of maximum light intensity is shown in 

figure 3.3. it shows that 27 iterations all fireflies are settled to optimum position and the light intensity sensed is 
maximum.  Now if normalize random number is used then the fitness function plot is shown in figure 3.3 along 

with the plot of uniform random function. 
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Figure 3.2(a): Initial positions of firefly 

 

 
Figure 3.2(b): every firefly settled to optimum position 

 

 
Figure 3.3: Light Intensity Plot of firefly for each iteration 

 

Figure 3.3 plot shows that normalize random function gives better fitness function value than uniform. The time 

consumption for this case is shown in table 3.1. 

 
Table 3.1:  Time consumption for optimum value settlement in every case 

Non Linear Function Uniform Distributed 

Random number 

Normally Distributed 

Random number 

Four Peak Non linear 

function 

3.42e-006 2.44e-006 

Parabolic function 3.90e-006 1.95e-006 

Rastrigin function 3.90e-006   1.95e-006 
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The parabolic function is used as objective function and its mathematical equation implemented is  

𝑓 𝑥. 𝑦 =  12 − (𝑥2 + 𝑦2)/100 
 

Plot in MATLAB is shown in figure 3.4 below. 

 
Figure 3.4: Plot of Parabolic function in MATLAB with 101 points along x and y axis. 

 
The light intensity plot again in this case is shown in figure 3.5. in parabolic function also fitness function value 

comes higher for normalize random number than uniform random number. The time taken for later case is also 

less. 

 
Figure 3.5: Light Intensity Plot of firefly in case of parabolic function for each iteration 

 
Now same firefly parameters are implemented for Rastrigin function. The mathematical form of function is  

𝑓 𝑥, 𝑦 =  80 − [20 + 𝑥2 + 𝑦2 − 10(𝑐𝑜𝑠 2𝜋𝑥 + 𝑐𝑜𝑠(2𝜋𝑦))] 
 
The MATLAB plot for this is shown in figure 3.6.In case of normalize random function the fireflies movement 

is shown in figure 3.7 for rastrigin function. 
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Figure 3.6: MATLAB plot of Rastrigin function 

 

 
Figure 3.7: Rastrigin function’s firefly movement  

 

The fitness function comparison for uniform and randomize function is shown in figure 3.8. 

 

 
Figure 3.8: Fitness function for Rastrigin non linear objective function 

 

In this plot the fitness function values come out to be less in case of normalizing random functions than uniform. 

A comparison bar graph is plotted in figure 3.9 to shows the time consumption between both random functions.  
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Figure3.9: Time elapsed between different functions 

 

The blue bar in above figure is for uniform random function and red is for normalizing random functions. This 

graph gives a clear visualization that normalize random function gives better time saving than uniform and 
previous discussion has also proved that fitness function value is also better in normalize random distribution 

function. Thus this is the way how random factor changes the property of firefly algorithm. 

 

IV. CONCLUSION 
In this paper we have discussed the firefly optimization. In the position updating formula, a factor which is 

sensitive to randomness of fireflies is mentioned. As discussed randomness has a quite significant effect in the 

optimization to get the optimum value. So this paper discussed the two mainstream random functions and their 

effect on various non linear objective functions. It has been observed that normalize random distributed function 

performs better than uniform random distribution function in terms of time consumption and fitness function 
value except for Rastrigin function 
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